a2 United States Patent

Harrison

US009210085B2

US 9,210,085 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

PEER-TO-PEER STREAMING OF NON-LIVE
CONTENT

Inventor: David Harrison, San Francisco, CA
us)

Assignee: BitTorrent, Inc., San Francisco, CA
us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1071 days.

Appl. No.: 11/868,464

Filed: Oct. 5, 2007
Prior Publication Data
US 2008/0140853 Al Jun. 12, 2008

Related U.S. Application Data

Provisional application No. 60/828,340, filed on Oct.
5, 2006, provisional application No. 60/954,535, filed
on Aug. 7, 2007.

Int. Cl.

GO6F 15/16 (2006.01)

HO4L 12/801 (2013.01)

HO4L 12/851 (2013.01)

HO4L 12/853 (2013.01)

(Continued)
U.S. CL
CPCcccee. HO4L 47/10 (2013.01); HO4L 47/193

(2013.01); HO4L 47/2408 (2013.01); HO4L
47/2416 (2013.01); HO4L 47/30 (2013.01);
HO4L 65/4084 (2013.01); HO4L 67/104
(2013.01); HO4L 67/108 (2013.01); HO4L
67/1091 (2013.01)

Field of Classification Search
CPC ... HO4L 47/10;, HO4L 47/193; HO4L 47/2408;
HO4L 47/2416; HO4L 47/30, HO4L 65/4084;
HO4L 67/104

USPC ottt 709/231
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2002/0194108 Al™* 12/2002 KitZecooevveveivvnennene. 705/37
2003/0126277 Al* 7/2003 Sonetal.ooeene 709/231
(Continued)
OTHER PUBLICATIONS

BASS: BitTorrent Assisted Streaming System for Video-on-Demand,
IEEE International Workshop on Multimedia Signal Processing
(MMSP), Oct. 2005 .*

(Continued)

Primary Examiner — Karen Tang
(74) Attorney, Agent, or Firm — Fenwick & West LLP

(57) ABSTRACT

A Peer-to-Peer protocol such as BitTorrent is used to assist
streaming. Peers download streaming content from the P2P
network while simultaneously playing the downloaded con-
tent. As the stream plays, an end system downloads any
missing pieces directly from a server or other infrastructure
node. This method roughly squares server capacity and can be
refined to require on average 0(1) servers regardless of the
number of concurrent users. Thus BitTorrent assisted stream-
ing scales better than traditional server-client and other infra-
structure-only solutions, each of which requires a number of
infrastructure nodes that scale linearly as a function of the
number of users. Unlike End-System-Multicast, BitTorrent
assisted streaming does not subject users to the vagaries of
intermediate unreliable, potentially bandwidth-constrained
end-systems; the departure of any single end-system has
minimal impact on overall performance; and BitTorrent has a
well-crafted incentive mechanism for encouraging users to
contribute their upstream capacity.

35 Claims, 9 Drawing Sheets

Server 604

System 600

Peer 602

US 9,210,085 B2
Page 2

(51) Int.CL

(56)

2006/0053209 Al* 3/2006 Li ...cccoovvviininnns

HO4L 12/835 (2013.01)
HO04L 29/06 (2006.01)
HO4L 29/08 (2006.01)

References Cited

U.S. PATENT DOCUMENTS

2006/0184688 Al 8/2006 Ganguly et al.
2007/0028133 Al 2/2007 Izutsu et al.

2007/0245010 Al1* 10/2007 Ametal. ...

2007/0294422 Al* 12/2007 chkerman et al.

2008/0005114 Al* 1/2008 Li ..ccoovviivinininnns
2009/0177792 Al* 7/2009 Guoetal. ...

OTHER PUBLICATIONS

Skevik et al., Analysis of BitTorrent and its use for the Design of a
P2P based Streaming Protocol fora Hybrid CDN, University of Oslo,
Jun. 2004.*

Lee et al., Multi-source Media Streaming for the Contents Distribu-
tion in a P2P Network, Aizawa et al. (Eds.), PCM 2004, LNCS 3333,
pp. 290-297, 2004.*

Chris Dana et al., BASS.BitTorrent Assisted Streaming System for

"""" 709/217 Video-on-Demand, 1EEE International Workshop on Multimedia

Signal Processing (MMSP), Oct. 2005, 4 pages.

"""" 709/223 International Search Report and Written Opinion for PCT/US07/

709/230 80648, Oct. 5, 2007, 8 pages.

........... 707/9
....... 709/231 * cited by examiner

U.S. Patent Dec. 8, 2015 Sheet 1 of 9 US 9,210,085 B2

FIG. 1
(Prior Arf)

w
| .
)
c
@
w

o~ [[T

(v

(a)

104
\
% -
B
2
=
Clients

US 9,210,085 B2

Sheet 2 of 9

Dec. 8, 2015

U.S. Patent

alnjondiselu)

(My JoLd)
¢ 9l

swe)sAg pug

=
L
=\

o \9
O

()
[

US 9,210,085 B2

Sheet 3 of 9

Dec. 8, 2015

U.S. Patent

YIOMIBN JUBLI011ig

1940097

B

]

peag
oy —

i
=%

1840997

oy —

a8l)
wajshs

923
Xe

SepoN
aInjonselu|

1994 Juslio] g

\nome/

9)14 a)ajdwioouy

sdoH 1
-Pu3 wajsAs-pug !

(uy soud) € ")\

(My J01id)
v Ol

US 9,210,085 B2

Sheet 4 of 9

Dec. 8, 2015

U.S. Patent

(MY JoLd)
¢ 9l
YIOMJSN JUBLIOL)G waysAs-pu3 SSvg
M\ D /\
M b
—; |_»| JuslOl)ig

18Jl-1s8i8Yy

A

1si14-1saiey

1aneg 1apio-u|
$9081d

Buissin

N
QO ~
(Yo}

V@ 19pIO-U|

8AlQ pJeH

09p07

US 9,210,085 B2

Sheet 5 of 9

Dec. 8, 2015

U.S. Patent

709 1994

709 Jead

A

9 Ol

009 waysAg

$09 Janlag

L]

709 Jead

]

%

US 9,210,085 B2

Sheet 6 of 9

Dec. 8, 2015

U.S. Patent

(a)

Nt

—
ey
o

=

[}
—
1"
=
o

A . 0

T THTTT A T T

pul ubag

aul| yoeqfheld

we)sAs-pu3 SSvy

abeio)g

03

ozomm .
—)

<!

99p0)

US 9,210,085 B2

Sheet 7 of 9

Dec. 8, 2015

U.S. Patent

(a)
(seynujw) awi}
8 09 oy 0¢

8 'Ol

0

00000¢
00000¥
' 000009

)

=

(<]
——

q

..... o]
000008 2 0,

90+3|

90+9¢°}

(e

)

000, 0009 000G 000 000€ 000C
i

000L O
_ 0

00000¢
00000¥
000009
000008
90+9|

_ 90+93¢’)

US 9,210,085 B2

Sheet 8 of 9

Dec. 8, 2015

U.S. Patent

6 Ol

1 h) (seynuiw) swiy

0ck. 00L 08 09 OF OC 0
J _.] i I O

000002
00000¥

000009
000008

90+9}

(sdq) arey

US 9,210,085 B2

Sheet 9 of 9

Dec. 8, 2015

U.S. Patent

0l Ol

L 9] wouy ys1y s)qibije
-}s8.e1 peojumop ‘mopuim Ajuond woly sl 8jqible-jsailies sedsid Buipeojumop jou Usyp Z
"JoAas uiblo
ay} wouj papeojumop pue pajdwasid sie (Salul) ajes Jidy) papasdxa sARY ey asoy))
s90atd o|qibijauj 511 9|qiB1je-)salies mopuim Ajond ay) Woly papeojuMop ale sedsld |

200} mopulp Ajold
._. 7 A ‘ N O
ucm(' — uibsg
L Dy |
auwi| yoeqAe|d

US 9,210,085 B2

1
PEER-TO-PEER STREAMING OF NON-LIVE
CONTENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. Nos. 60/828,340 and 60/954,535, both of
which are incorporated by reference herein in their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to file transferring
in a network. In particular, the present invention is directed to
streaming of files in a peer-to-peer network.

2. Description of Background Art

Content providers typically either stream audio, video, or
other content directly from a server farm or employ a content
distribution network (CDN), such as Akamai. A CDN com-
prises a set of servers or application-layer routers sprinkled
about the Internet, and can thus solve problems that are not
addressed by a single server farm. When a portion of the
network becomes congested or experiences a localized fail-
ure, a CDN can shift users between servers or route between
different application-layer routers. When the network
becomes partitioned, subsets of the topology that contain a
working server typically continue operating.

Although CDNs address critical problems, CDNs like the
traditional server-client model require substantial infrastruc-
ture. For example, Akamai operates tens of thousands of
servers all over the world. The number of servers scales
linearly with the number of concurrent users.

In the last few years, a new paradigm has arisen in which
end-systems form a peer-to-peer (P2P) network. An end-
system acting as a peer contributes its bandwidth and storage
to aid in the distribution of content among the peers. This
paradigm has no inherent bandwidth scaling limit since arriv-
ing peers add more capacity to the system. Two recent
examples of this paradigm are BitTorrent and Avalanche.

To encourage peers to contribute their bandwidth
resources, BitTorrent uses a tit-for-tat incentive mechanism in
which each peer sends to those peers that send the most to it.
So that peers have content that other peers want, BitTorrent
divides the file into pieces and distributes the pieces in rarest-
first order. Avalanche ensures that peers have information of
interest by using network coding. In either case a file is not
playable until the entire file has been received.

Conventional solutions to content distribution can be
divided generally into one of four categories: infrastructure-
only solutions, end system multicast, peer-to-peer file shar-
ing, and peer-to-peer streaming.

Infrastructure-Only Solutions

The traditional server-client model divides nodes into serv-
ers 102 that provide the data, and clients 104 that consume it
as shown in FIG. 1(a). A corporate network or Internet Ser-
vice Providers (ISPs) may provide proxy caches to reduce
latency and network load by storing content near users on
their networks. A CDN may achieve similar goals by repli-
cating content out to server farms that are sprinkled about the
Internet topology as shown in FIG. 1(5). For live content, a
CDN cannot replicate content ahead of time, but the CDN can
create an application-layer multicast tree that spans the data
centers and then each data center takes end-users as leaves as
shown in FIG. 1(c).

However all of these strategies require infrastructure that
grows linearly with the number of users. To see this, divide all

10

25

35

40

45

55

65

2

nodes into either infrastructure nodes 202 or end-systems 204
as shown in FIG. 2. The infrastructure nodes include servers,
proxy caches, and application-layer routers. Regardless of
how the infrastructure nodes are arranged internally, in order
to serve n concurrent users at a minimum bit rate r,, the
infrastructure must deliver n users worth of content at an
aggregate rate of nr_. Assuming each infrastructure node has
fixed capacity, for large n, the number of infrastructure nodes
must be at least linear in n, i.e., Q(n).

Examples of the traditional server-client model include
Real Networks’ Helix server with the RealOne Player client,
and Microsoft Windows Media Services with the Windows
Media Player client. Examples of content distribution net-
works that may replicate content out to data centers before
delivery include Akamai and Real Networks.

End-System Multicast

Alternatively, end-systems can arrange themselves into a
tree as shown in FIG. 3(a) and forward content that they
receive. This is conventionally known as end system multi-
cast. However, no proposed end-system multicast scheme has
a fully decentralized incentive mechanism. The importance
of such incentive mechanisms is underscored in two studies
of peer-to-peer file sharing systems that lack incentive
mechanisms: for gnutella as high as 70% of the peers share
zero or no files, and Napster at the height of its popularity had
20%-40% of its peers sharing few or no files.

End-system multicast is an example of the Peer-to-Peer
(P2P) paradigm. With P2P, peers forward content to each
other. Thus P2P networks leverage the peers’ otherwise
unused upstream bandwidth to add capacity to the system.
For media encoded at a bit rate less than the peers’ upstream
capacity, each peer adds more system capacity than it con-
sumes. In theory, a single peer or server could then serve any
number of end-systems. However, to route content through an
end-system requires passing the content through a potentially
congested and lossy access network to forward through a
node that may depart at any time. Thus, quality, rather than
capacity, limits scale.

A peer exhibits peer reliance when it relies on one or more
peers to provide content, but either does not allow enough
time or by design is disallowed from contacting a reliable
infrastructure node such as a server to provide missing or
damaged content should the peers fail. The most basic form of
ESM exhibits peer reliance. FIG. 3(5) omits the network
cloud and shows the end-systems arranged in a tree rooted at
an infrastructure node. The server has capacity C, each end-
system has capacity C, and the content passes through a
maximum of k end-system hops to reach the end-systems.
Even if the peers use a reliable transport protocol such as TCP
to retransmit lost packets at each peer-to-peer hop, a peer may
still depart unexpectedly, requiring its children to spend sec-
onds, perhaps tens of seconds, to disambiguate a burst loss
from the departure of a parent and to then repair the tree. Of
even more concern is that the departure of a single end-system
near the root of the tree can result in a disruption for a sig-
nificant fraction of the entire audience. Assuming that each
node has probability of unexpectedly departing p within any
given time interval, then the probability of an unexpected
departure occurring in that interval is 1-(1-p)* where k is the
number of intermediate hops to the source. At some depth the
frequency of departures results in intolerable performance.
Similar arguments can be made for packet loss. As shown in
FIG. 3(c), this means that ESM also requires O(n) infrastruc-
ture when playback quality is taken into account.

There are multiple ways of improving the robustness of
ESM to packet loss and to unexpected end-system departures,
each with trade-offs. For example, Splitstream and CoopNet

US 9,210,085 B2

3

construct multiple interior node-disjoint multicast trees span-
ning the receivers, i.e., a node is an interior node on only one
tree and is a leaf on all of the other trees. As a result, if a node
fails at most one tree is disrupted. All receivers still receive the
remaining content, and if the media (audio, video) is encoded
using Multiple Description Coding (MDC) the media is play-
able, albeit with some degradation in quality.

Unfortunately MDC has high overhead, especially for
video. It is difficult to make each description independently
decodable without including a significant amount of redun-
dant information, e.g., redundant motion vectors can con-
sume 20% of the encoded bit rate. Furthermore, even though
MDC increases robustness to packet loss, this merely
increases the allowable depth of the tree, and thus does not
change ESM from requiring O(n) infrastructure.

Peer-to-Peer File Sharing

BitTorrent contains one key contribution missing from
prior peer-to-peer file sharing systems and proposed ESM
systems: BitTorrent includes a decentralized incentive
mechanism to encourage peers to share their upstream band-
width. Using BitTorrent, the shared file is broken into pieces.
Each peer opens connections with a set of peers desiring the
same file, and each tells the others what pieces they have.
Each peer then swaps pieces until it has a complete file. Upon
obtaining the complete file, a peer that continues sharing is
called a seed. To encourage peers to share their upstream
capacity, BitTorrent peers engage in a rate-based tit-for-tat:
each peer sends to the four peers that send the fastest to it. To
allow peers to compete for those top four spots, each peer
randomly admits one additional peer every thirty seconds and
stops sending to the slowest.

FIG. 4 illustrates a BitTorrent peer-to-peer network, com-
prised of two kinds of end-systems: downloaders 402 and
seeds 404. Seeds have a complete copy of the file desired by
the downloaders. The downloaders download from the seeds
and trade the downloaded pieces with other downloaders.

Peer-to-Peer Streaming

End-system multicast is an example of peer-to-peer
streaming Recently CoolStreaming introduced the notion of a
data-driven overlay network for live media streaming. The
data-driven overlay arranges peers into a graph. The avail-
ability of needed data determines the direction data flows
through the graph. CoolStreaming has been demonstrated
delivering live TV-quality streaming (450 Kbps). However,
CoolStreaming provides no incentive mechanisms for users
to contribute their upstream bandwidth.

SwarmStreaming is a product offered by Onion Networks
Inc., of Minneapolis, Minn., which breaks media files into
pieces and distributes the pieces across a peer-to-peer net-
work. These pieces are then delivered between peers suffi-
ciently in-order to allow playback before the entire file has
been downloaded. However, SwarmStreaming does not pro-
vide incentives for users to provide their upstream capacity.

BitTorrent Assisted Streaming System (BASS) is not quite
peer-to-peer streaming, but rather employs a hybrid P2P/
server-client model that scales better than the traditional
server-client model and avoids peer reliance, thus providing a
similar user experience to the traditional server-client model.
BASS is further described in Chris Dana, Danjue Li, David
Harrison, and Chen-Nee Chuah, “Bass: Bittorrent assisted
streaming system for video-on-demand,” in /IEEE Interna-
tional Workshop on Media Signal Processing 2005, October
2005, incorporated by reference herein.

To enable a peer to begin playing before it has received the
entire file, BASS introduces a server 502 or other infrastruc-
ture node that provides any piece that a peer could not down-
load from BitTorrent in time for playback, as illustrated in

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5. BitTorrent is not modified except that BASS will not
download missing pieces for an already played portion of the
file. Thus BASS downloads pieces in rarest first order from
the interval [t, T] where t is the user’s current playback time
and T is the duration of the file.

SUMMARY OF THE INVENTION

The present invention enables methods for employing a
peer-to-peer network such as BitTorrent to assist streaming.
According to a method of the present invention, users down-
load streams from BitTorrent while simultaneously playing
the stream being downloaded. As the stream plays, the end-
system downloads any missing pieces directly from a server
or other infrastructure node. This offers a middle ground
between pure End-System Multicast (ESM) and pure infra-
structure solutions. This enables the use of on average 0(1)
servers, regardless of the number of concurrent users. Thus
BitTorrent assisted streaming scales better than traditional
server-client and other infrastructure-only solutions, each of
which requires a number of infrastructure nodes that scales
linearly as a function of the number of users. Unlike ESM,
BitTorrent assisted streaming does not subject users to the
vagaries of intermediate unreliable, potentially bandwidth-
constrained end-systems; the departure of any single end-
system has minimal impact on overall performance; and Bit-
Torrent has a well-crafted incentive mechanism for
encouraging users to contribute their upstream capacity.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates traditional infrastructure-only solutions
to file transfers.

FIG. 2 illustrates a division of nodes into infrastructure
nodes and end-systems.

FIG. 3 illustrates the use of end-system multicast.

FIG. 4 illustrates a BitTorrent peer-to-peer network.

FIG. 5 illustrates the use of a BitTorrent Assisted Stream-
ing System.

FIG. 6 illustrates interaction between peers and a server in
accordance with an embodiment of the present invention.

FIG. 7(a) illustrates the flow of pieces into a peer in accor-
dance with an embodiment of the present invention.

FIG. 7(b) illustrates the uniform distribution across an
unviewed portion of a file of bits arriving from the peer-to-
peer network in accordance with an embodiment of the
present invention.

FIG. 8 illustrates a rate at which a peer receives bits from a
media server in accordance with an embodiment of the
present invention.

FIG. 9 illustrates the rate a peer receives from a media
server and from the BitTorrent network when the downlink is
saturated, in accordance with an embodiment of the present
invention.

FIG. 10 is illustrates a priority window having a width of a
fixed number of pieces in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 6 provides a high level view ofthe interaction between
peers and a server in accordance with an embodiment of the
present invention. Initially, peers 602 communicate with each
other and with server 604. As each peer obtains more and
more pieces, however, it is more likely that each peer will
have access from the peer-to-peer network to the next pieces

US 9,210,085 B2

5

in the stream to be played, and therefore the peers will not
have to obtain those pieces from the server 604. Accordingly,
over time, downloads from the server 604 to a particular peer
decrease, or even end, as described further below. Of course,
although only three peers and one server are illustrated for
ease of explanation, many such servers and peers exist in
reality.

Server 604 and peers 602 execute server and client soft-
ware, respectively, that implement the features described
herein. Accordingly, each of a peer, a server, or the combina-
tion of multiple peers and multiple servers can all be
described as a system in the context of the present invention.
Thus, we refer to system 600 throughout this specification as
an inclusive description of both peers and servers working
together where required, and independently as appropriate.

The present invention includes mechanisms for combining
the traditional-server client model with a peer-to-peer net-
work protocol. For purposes of this disclosure, we assume
that the peer-to-peer protocol being used is the BitTorrent
protocol, but it is not intended to limit the applicability of the
described invention to BitTorrent.

These mechanisms enable content providers to stream
video, audio, or other streaming content to Internet-scale
audiences with only a handful of servers with the same user
experience expected from the traditional server-client model
that today employs vast media server farms to reach large
audiences.

System 600 operates in part on the premise that to make a
BitTorrent file playable before it has been completely down-
loaded, it need only ensure that the pieces currently being
played have been downloaded. To enable this, system 600
includes servers to provide peers with pieces that they have
not obtained in time from BitTorrent peers and, after some
startup time, we shift the peers entirely over to the peer-to-
peer network. We refer to using a server to fill in missing
pieces as hole-filling.

With the described mechanisms the average number of
servers required based on a fluid-model is 0(1) regardless of
audience size. Once there are a large number of peers, if there
are even a small percentage of users willing to act as seeds
then 0(1) of these O(n) seeds may be tasked by system 600 to
act as servers without adversely affecting the health of the
BitTorrent peer-to-peer network. Once this stage is reached,
system 600 can withdraw, leaving a self-sustaining, infra-
structure-less peer-to-peer streaming system now having tra-
ditional server-client streaming performance. This process
can be referred to as “kindling”, inspired by the Chinese
saying “Xing Xing Zhi Huo, Ke Ii Liao Yuan,” meaning “little
chips light vast fires.”

In describing the present invention, we first describe a set
of extensions to the BitTorrent ASsisted Streaming (BASS)
system to improve performance and to deal with uncoopera-
tive peers. We refer to this first set of mechanisms as BASS
Extensions. We then describe Kindling, which reworks BASS
to achieve 0(1) servers to serve n concurrent streams. We first
develop BASS Extensions because Kindling degrades to
BASS when n is small.

The BASS Extensions enabled in accordance with an
embodiment of the present invention include:

bandwidth sharing mechanisms to adequately allocate
bandwidth to hole-filling servers;

an auction method for admitting the best file sharers; and

several ways of estimating imposed load on the server for
purposes of bid estimation.

Kindling retains BASS’s hole-filling behavior and enables
the following:

10

15

20

25

30

35

40

45

50

55

60

65

6

Kindling offers an alternative to the auction in the form of
an admission control mechanism;

Kindling changes the incentive mechanism used to shift
load away from the hole-filling servers and on to the peer-to-
peer network; and

Kindling employs a sliding window to schedule pieces that
it downloads from windows.

BASS Extensions

The first extension to BASS that system 600 provides is the
use of receiver-driven bandwidth sharing. Second is the use of
auctions to provide incentives to end users to switch over
from the server to the BitTorrent P2P network. Running an
auction requires some means of computing bids, and system
600 therefore includes bid estimators.

Receiver-Driven Bandwidth Sharing and Congestion Con-
trol

System 600 enables streaming video and TCP to perform
well together in the same access bottleneck. The problem is
that the TCP/IP protocol stack has no built-in notion of Qual-
ity of Service (QoS). Mehra and Zakhor devised mechanisms
for Receiver-Driven Bandwidth Sharing (RDBS) for TCP
alone and for TCP plus video. System 600 combines a partial
video stream arriving from a BASS hole-filling server and
BitTorrent TCP connections consuming as much of the
remaining capacity as possible.

In one embodiment receiver-driven bandwidth sharing is
implemented using TCP rate control. TCP rate control adjusts
the TCP send rate by manipulating the receiver’s advertised
window,

window
rate = ——.
rir

Inanother embodiment, receiver-driven bandwidth sharing
is implemented by limiting the rate bytes are read from the
TCP receive buffer. If we read from the buffer at rate r, then
the sender cannot exceed rate r once the TCP receive buffer is
full.

Thus, by manipulating window sizes or buffer read rates,
capacity can be reallocated as desired, including providing
higher priority bandwidth access to BASS’s hole-filling.

If video is delivered using TCP, e.g., to avoid a firewall,
then BitTorrent connections can interfere with the video
stream. TCP allocates capacity roughly fairly. However,
when there are many TCP connections or little capacity in
excess of the stream’s encoded bit rate, a fair share may be
insufficient to get the next piece from the hole-filling BASS
server to the video coder. Assuming a fair share is sufficient,
another problem exists as the video progresses: because fewer
and fewer holes need to be filled by the server, the server is
frequently starting with a small window size. As is known by
those of skill in the art, TCP exhibits a bias against TCP
connections with small windows. With RDBS, the capacity
allocated to lower priority BitTorrent connections can be
quickly scaled back to permit a slow-starting server sufficient
share to deliver the next piece before the playback deadline.

If video is delivered using UDP without TFRC or similar
congestion control, then the video will push aside BitTorrent
connections. However, both TCP and UDP will experience
bursts of packet loss due to TCP’s loss-based congestion
control mechanisms and burst loss will cause video quality to
suffer. System 600 therefore uses TCP rate control, which
enables throttling of the TCP connections before they incur
loss.

US 9,210,085 B2

7

In one embodiment, rates are computed using the ERICA
rate control algorithm devised by Shivkumar Kalyanaraman
et al. ERICA was originally envisioned for use in ATM net-
works and thus classifies traffic as either Variable Bit Rate
(VBR) or Available Bit Rate (ABR) traffic. VBR traffic is
assumed to be inelastic to congestion and is thus given high
priority over presumably elastic ABR traffic. As far as the
ERICA rate computation is concerned, hole-filling from a
BASS server is treated as VBR traffic and all TCP connec-
tions are treated as ABR traffic.

ERICA computes a max-min fair allocation of any capacity
not used by VBR traffic. System 600 places a bound on the
VBR traffic that is more than sufficient to fill a hole before the
missing piece is needed. As a result, the bit rate oscillates
whenever hole-filling occurs. However, RDBS also allows
TCP connections to quickly recover to a max-min fair share.
The amount of time depends somewhat on the TCP imple-
mentation. With TCP Rate Contorl, the TCP implementation
in ns-2 does not reduce TCP’s cwnd or ssthresh variables
whenever the receiver advertised window is below cwnd. As
a result, TCP jumps straight back to the desired rate when the
receiver advertised window is lifted. More conservative TCP
implementations may slow-start back to their respective pre-
hole-filling congestion windows.

Note that receiver-driven bandwidth sharing cannot
achieve the equivalent of priority queuing at a remote bottle-
neck such as at the access point, but it can keep queue lengths
controlled by using Vegas-like mechanisms to estimate queu-
ing delay, or increasing receiver advertised window sizes
until such increases no longer result in an increase in through-
put.

We have implemented TCP Rate Control, but we assume
that access capacity is known. Users have traditionally pro-
vided an upper bound on the capacity that can be allocated to
peer-to-peer file sharing programs and thus this does not seem
unreasonable that this same configuration parameter could be
applied both to BASS hole-filling traffic and to BitTorrent
traffic. Even without a user-provided rate limit, Mehra’s sys-
tem does not explicitly estimate access capacity. Thus access
capacity estimation is not necessary for hole-filling.

Receiver-Driven Bandwidth Sharing Versus Static Rate
Limits

In another embodiment, an alternative to Receiver-Driven
Bandwidth Sharing is to statically rate limit BitTorrent con-
nections sufficiently below access capacity to allow for non-
rate limited hole-filling traffic to progress unhindered.

Static rate limits do not allow BitTorrent to use the entire
access capacity even when neither hole-filling nor other
applications are using the capacity. However, the sheer sim-
plicity of static rate limits may overwhelm the benefits of
more sophisticated, complex, and error-prone solutions.

Neither RDBS nor static rate limits completely protect
hole-filling against TCP or UDP traffic that is not rate-con-
trolled or rate-limited. We refer to un-rate-controlled or un-
rate-limited TCP or UDP traffic as being unconstrained. Once
unconstrained traffic causes the local access point to become
saturated, all connections including the statically rate-limited
connections begin to build queue. Queuing potentially
induces loss that affects the hole-filling as well as all other
constrained and unconstrained traffic.

Assume Mehra’s rate controller is applied to just the Bit-
Torrent traffic. When unconstrained traffic causes the bottle-
neck to become saturated, the rate controller constrains Bit-
Torrent. Thus the lower priority BitTorrent traffic becomes a
cushion protecting video from unconstrained TCP and UDP.
This cushioning effect does not occur with static rate-limited
BitTorrent connections.

10

15

20

25

30

35

40

45

50

55

60

65

8

Auctions to Encourage Well-Behaved Users

What incentive does a user have to switch over from a
reliable server to an unreliable peer-to-peer network that will
consume the user’s upstream access capacity? The answer
depends on the user’s utility derived from receiving faster
than the encoded bit rate. To achieve flawless video playback,
the server need only send slightly above the encoded bit rate.
If user utility is an increasing function of receive rate then
users have incentive to use BitTorrent to receive in excess of
the rate obtained from the server. If users derive little utility
from receiving in excess of the encoded bit rate, then some
additional incentive mechanism is necessary to shift people
from the server onto the peer-to-peer network.

System 600 therefore optionally implements the notion of
a “game-within-a-game.”The BitTorrent peers 602 engage in
rate-based tit-for-tat while they also engage in an auction
game to gain access to the hole-filling server. The key is to
make the best tit-for-tatter the winner of the auction. Each
peer 602 wishing to stream computes a bid and submits it to
the server 604. The peer that submits the lowest bid wins. To
make the auction winner coincide with the best tit-for-tatter,
the bid is interpreted as an upper bound on the number of bits
the user will download from the server.

As the peer progresses in its BitTorrent download, the peer
revises its bid downward to reflect the bits it has received from
BitTorrent and the consequently lower estimated load it will
impose on the server. As the peer progresses, the number of
samples it has from which to model the expected bit rates
from BitTorrent also improves and thus its bids can become
less conservative.

To prevent or at least discourage cheaters, each bid is
treated as a contract. If a peer exceeds the contract, meaning
the peer becomes an offender by attempting to download
more than the number of bits in its bid, then the server boots
the peer, causing the peer to likely experience a disruption in
playback until BitTorrent completes the entire download.
This is called the strict boot policy. The potential of being
booted is considered sufficient deterrent to ensure that most
users will attempt to download as much as possible from
BitTorrent to avoid this eventuality.

There are a number of not quite so harsh strategies for
dealing with peers that exceed their contracts, including the
following:

Best-effort Penalty Box: The server 604 moves the
offender into a best effort class where the server continues to
send to the peer only when the server has unused capacity.
The server then gives the oftender’s rate allocation back to the
admission controller to admit new peers. This method will not
cause offenders to experience any reduction in quality when
the server is underutilized.

Low Priority Penalty Box: Essentially the same as the
best-effort penalty box except the peer’s capacity is not
retracted and returned to the admission controller. Thus only
when the server starts to experience a heavy load as would
happen when there are large or many offenders does the
penalty box start degrading the offender(s)’ quality. This is a
weaker penalty than best-effort.

Quality Penalty Box: For MPEG video, the server begins
dropping offenders’ B and P frames to keep load down.

Advertisement Penalty Box: The server refuses to provide
any more capacity to the viewer until the viewer downloads
(and presumably views) an advertisement. The user is then
allocated some additional bits on its contract.

Likewise, users can take progressively more complex steps
to avoid exceeding the contract. A user can choose to degrade
its own video quality to avoid a more stringent response from
the server. For example, the user can choose to download only

US 9,210,085 B2

9

1 frames from the server whenever the user is well above the
expected rate from which the user’s bid was originally
derived.

Admission Control

As peers complete viewing or prematurely stop viewing,
the admission controller admits the next low bidder from the
auction. That is, system 600 knows that a user makes its
heaviest demands of the server 604 at the beginning of the
streaming session, so the admission controller only admits the
next low bidder if the average available capacity exceeds the
encoded bit rate. The system parameters for the admission
control algorithm in one embodiment are given in Table 1.

TABLE I

SYSTEM PARAMETERS FOR
BASS SERVER ADMISSION CONTROL

Parameter Description Typical Value
[¢3 EWMA parm for util 0.1
interval averaging interval 15 seconds
thresh utilization threshold 0.9

The admission control algorithm in one embodiment oper-
ates as follows:

while ((thresh-stil) — up__cap >
encoded__rate && Ibids| >0) 1
{
util +=r0/up__cap;)
bass__peer = bids.pop(); 3)
bass__peer->admit(); 4
¥

Step (1) proceeds to admit peers only while the available
uplink capacity exceeds the encoded bit rate. The available
uplink capacity is determined to operate the server around a
threshold utilization threshold. The thresh system parameter
that is provisioned to reduce the likelihood of saturation.

If a peer is not admitted, its bid remains in bids until the
necessary capacity becomes available or the bid is not
updated for more than 10 minutes in which case the bid is
discarded.

In Step (2), util is boosted to immediately take into account
the increase in utilization that could be incurred by a flow that
starts streaming. The increase in rate is bounded by the
encoded bit rate. util is time averaged utilization of the serv-
er’s access uplink. This step introduces a conservative bias
into the utilization estimator to prevent multiple peers from
being admitted in rapid succession when the utilization drops.

In Step (3), pop removes the smallest bid from the bids set.

In Step (4), admit tells the peer with the smallest bid that it
is now allowed to begin streaming.

At the end of every fixed-length time interval, the server
updates its utilization estimate according to an exponentially
weighted moving average.

Methods for Bid Estimation

When a peer first joins, it submits a starting bid equal to the
length of the file. If the BASS Server 604 is sufficiently
underutilized then it will immediately admit the peer despite
the high bid. The peer cannot submit any lower bid when it
first starts, because the peer has no knowledge of what bit rate
it can get from the BitTorrent network.

The current auction implementation uses the trivial
remaining file bid estimator. This estimator periodically sets
its bid equal to the size of the file minus the number of bits that
have been downloaded from BitTorrent. This rewards the best

10

15

20

25

30

35

40

45

50

55

60

65

10

tit-for-tatters prior to admission to streaming, but it places no
constraint on how much the admitted peer downloads from
the BitTorrent network after admission. A better estimator is
needed.
System 600 can model the expected load a peer will place
on the server and submit the expected load as that peer’s bid.
We use the terminology given in Table II.

TABLE I

BASS NOTATION

t Current time in playback

T Duratin of file when played

Rp(t;, t) Rate of bits to interval [t,, t5].

Rp(t) Bitrate arriving from BitTorrent.

R4(t) Bitrate from server.

E(t) Effective bitrate from BitTorrent = Rate
bits are read from storage.

B(t) Benefit derived from BitTorrent = Number
of bits played from BitTorrent.

R(t) Combined rate from server and BitTorrent.

T Rate from BitTorrent when p2p network
is bottlesecked.

1o Encoded bitrate.

C Peer’s access downlink capacity.

Cp Peer’s access uplink capacity.

Cs Server’s access uplink capacity.

We analyze BASS using a bufferless, fluid model that
ignores piece boundaries. Our analysis views the system from
a single peer P as shown in FIG. 7(a). Peer P has sufficient
local storage to contain downloaded pieces for the media file,
peer P receives from a server with rate R(t), and peer P
receives from a BitTorrent network with rate R4(t). Because
BitTorrent delivers bits in rarest-first order we have two
notions of time (see FIG. 7(b)): there is the current playback
time t and the time that an arriving bit will be played t: At t=0,
the user begins viewing the file, and the user finishes at time
t=T. We assume the playback time for a bit arriving from
BitTorrent is uniformly distributed in the unviewed portion of
the file. This means that at any time t, the playback time T for
the next received bit obeys t=U[t,T].

We consider BASS operating in one of two cases. In the
first case, the aggregate uplink capacity of the peers is insuf-
ficient to saturate the peers’ downlinks, or peer P has insuffi-
cient uplink capacity to elicit enough reciprocation from
other peers to saturate P’s downlink.

Case 1: Unsaturated Downlink

In this case, we assume that either remote uplinks are
saturated and therefore cannot provide additional bit rate to
peer P, or peer P’s uplink is saturated. If the prior is true, then
the rate at which bits arrive from BitTorrent corresponds to a
portion of the uplinks of the constant number of peers con-
nected to P and thus Ry(D)« C, . where C,, is peer uplink
capacity. If the latter is true and the BitTorrent network recip-
rocates roughly at the same rate as the local peer sends, then
Ry(t) = C . Either way, we simplify the problem by setting
Rj(1) equal to constant r.

If we let R4(t) denote the rate of bits arriving from BitTor-
rent and R(t,, t,) denote the rate bits arrive to interval [t,, t,]
then

Rp(t)=Rp(t, 1)=r.

Let B(t) denote the benefit derived from BitTorrent up to
time t, meaning the number of bits provided from BitTorrent

that have been played. B(t) is thus given by
B()=[y'Ra(v,p)dv. (D

Because in our analysis the bits arriving from BitTorrent
are uniformly distributed across any interval [t,, t,] for t, =t,

US 9,210,085 B2

11

2
Rp(ty,) = Rp(1) (2)

n-n
T-1'

Before we can determine the load imposed by peer P on the
server, we must first determine the rate peer P can read useful
bits from its local storage. This is the effective bit rate E(t),
which from Equations (1) and (2) is given by

d T=1 (3)
En=— f Rp(t, Ddt
=0

_dfT:’R()t—Td
Tdr), BT 4n

Rewriting to avoid the possibility of an effective bit rate
exceeding the encoded bit rate,

rlInT -In(T-0] if O=<r=r*
En) =1 ro ifr=r<T
0 otherwise

where t¥=(1-e~"*")T is the time when the entire media file
resides in storage and thus downloading from the server is no
longer necessary.

Since the model is bufferless, and the peer only downloads
from the server when it cannot obtain the bits from the local
storage, the sum of the rate from the server and from local
storage is always equal to the encoded bit rate,

Rs(0) + E(D) + rp. 4
thus

ro—r[InT-In(T-1)] if O=r<y¢ (5)
Rs(1) = .

0 otherwise,

In FIG. 8(a), there is illustrated the relationship between
R (1), Rg(t) and E(t) versus time. A simulation with one
server, one BASS peer, and an underprovisioned BitTorrent
network was undertaken, and the results compared against the
analysis as shown in FIG. 8(5). which yields expected load
imposed by peer P as

E[R(D]=ro-r[1-e7""T, Q)

As noted, the expected load can be used as a basis for
computing a bid.

Case 2: Saturated Downlink

A node can determine when it is in a state with a saturated
downlink versus a state when the BitTorrent peer-to-peer
network is bottlenecked elsewhere with the following proce-
dure:

if util > sat__thresh then
saturated

else
not saturated

Here sat_thresh is a system parameter in (0, 1) likely close
to 0.9. util is measured over an interval and exponentially
averaged in the same manner as the util variable maintained
by the BASS server.

10

15

20

25

35

40

45

50

55

60

65

12

If anode is in the case of a saturated downlink then it uses
the following analysis as input to its load estimate, which it
can use as its bid.

In the case of a saturated downlink, R(t) is no longer a
constant r, but is rather a function of the available capacity.
Because of the auction game, we know that a user will want to
maximally utilize BitTorrent to avoid the possibility of being
cut off before completing streaming. Thus we can restate the
problem as a simple single variable linear optimization:

maximize Rz(1)Vie fO, *] (7)
such that R (£)+R5()<C(8)
R(D+E(1)210(9)

R(1)20, Rp(1)=0(10)

0=E(H)=ry(11)

The above maximization applies until the file is down-
loaded at time t=t* at which time R (t) and R4(t) go to zero.

Assume R (1)+Rz(t)<C and Ry(t) is optimal, increasing
Rj(t) does not violate any constraints and thus we are met
with a contradiction. In order for R4(t) to be optimal, R (t)+
Rz()=C.

Assume Rg(1) is optimal for a case when R (t)+E(t)>r,.
Decreasing R (t) must increase R z(t) to satisfy the proofin the
previous paragraph, and thus we are again met with a contra-
diction. Thus, R (t)+E(t)=r,.

Substituting R ,(1)=C-Rz(t) into Inequality (9) and chang-
ing to an equality in accordance with the above proofs yields

C-Ry(D+E(D)=rq. (12)

Combining Inequality (12) with Equation (3) and convert-
ing to an equality yields the integral equation

T=t

d
C—RB(I)+E[:0 Rp(7)

-7
T-1

a3

dt =ro.

Equation (13) simplifies to

14

C—-Rp(D+ fT:rRB(T)

dr =17g.
0 T—TTTO

Differentiating Equation (14) yields a first-order non-lin-
ear homogeneous differential equation

dR 0+ Rp(t ! =0
-7 5(1) B()ﬁ—a

which yields

Rp(0) = A
BEET

where A is an arbitrary constant. Substituting back into
Equation (14) and evaluating at O to solve for the constant A
yields,

US 9,210,085 B2

13

(C=r)T . "
— ifr=rt
RB(I):{ T-1

0 otherwise

where t*=C and corresponds to the time when the file has
been completely. downloaded. Because R (t)=C-Rz(t) while
the file is incomplete,

(C—ro)T

Rs(z)={c T-
0

R,(t) and R4(t) are shown in FIG. I.
To determine the expected load imposed by this peer we
integrate across the length of the file yielding

ifr=r*

otherwise

*

1 7 (C—ro)T
E[Rs(D] = ?f C- T dr.
=0 -

1s)

The expected load can serve as a basis for computing a bid.

Kindling

Kindling proceeds from the observation that for the game
theoretic underpinnings of the rate-based tit-for-tat to work,
there need only be more than about 5 peers in the game who
have overlapping interests to serve as a basis for trade. The
number 5 comes from 4 unchoked peers, 1 optimistic peer,
and at least 1 other fighting to get into the top 5. For the game
to function well however, more than 5- perhaps 10-peers
would be desirable. Regardless of the exact number, the num-
ber is 0 (1) and we denote this constant k.

In the context of streaming media, Kindling prefers that the
P2P network provide pieces that are needed in the near future,
because if peers reach a stage during playback where their
neighboring peers can always plug holes before the hole-
filling server is forced into it, then the hole-filling server is
freed up to focus on starting peers.

To completely eliminate a peer’s reliance on hole-filling
after some time into playback requires

1) that peers are grouped based on when they started
streaming or more accurately based on their current playback
times, and

2) peers focus on downloading pieces of overlapping inter-
est, i.e., pieces within a time range that encompasses all peers
in a group.

We ignore for amoment the possibility that this could skew
the distribution of pieces within the network. What is more
important is that tit-for-tat works well. Pieces might disap-
pear from the peer-to-peer network using this strategy, but
they will always be available from the hole-filling servers.

Unfortunately, when the number of users is small there are
likely to be few viewing the nearby portions of the media file.
If the users arrive according to a Poisson process then users’
current playback times will be uniformly distributed across
the entire length of the file. In order to serve as a basis of trade,
each user would then need a broad scope to encompass pieces
of common interest. In other words, each peer would have to
download pieces across the entire length of the file. Because
each user already has pieces he or she has viewed, this means
downloading pieces across the unviewed portion of the file.
This is exactly what BASS does.

For small n, Kindling is BASS.

10

15

20

25

(]
<

40

50

55

60

65

14

As n increases, peers become closer to each other on the
timeline. Unfortunately with existing BitTorrent, tracker
returns a random subset of the peers rather than a subset based
on playback times. In one embodiment we modify the tracker
and/or the BitTorrent Distributed Hash Table (DHT), and/or
Peer Exchange (PEX) to return the k peers with the nearest
playback times in addition to the random subset of peers
normally returned.

Assume we order the peer’s according to current playback
times from smallest to largest (t, t,, . . ., t,). The local peer’s
playback time t is guaranteed to be less than t,. We introduce
the notion of timewise nearness to refer to peers with near
playback times. The set of k returned from the tracker, and/or
DHT, and/or PEX are known as the k-timewise nearest set.

The local peer then uses a modified BitTorrent to download
in rarest-first order across the range [t,t,]. We also modify
BitTorrent so that it biases it’s optimistic unchoke algorithm
to more frequently select peers within the k over the set of
peers obtained from the tracker.

More accurately stated, every peer has a different k-time-
wise nearest set and Kindling depends on this. Peers with
greater playback times have overlapping interests with those
further along in the file and this allows pieces later in the file
to propagate pieces back to peers near the beginning of the
file. There is some concern that this introduces a net flow from
those further along in the file and that this imbalance sacri-
fices the tit-for-tat mechanism. This is why peers still spend
some time trading with peers that are not necessarily in the
k-timewise nearest set. Furthermore once a peer has com-
pletely downloaded the bits in the interval [t, t.] the node
broadens its scope to include [t,, T] thereby allowing excess
capacity to fight the net flow.

The Intuition of the 0(1) Argument

We have noted that Kindling requires 0(1) servers. We
motivate this with a fluid model with the caveat that the model
says nothing about Kindling at a scale where TCP mecha-
nisms or the discrete nature of BitTorrent are likely to become
significant factors.

We provide the argument below, but let us first provide the
intuition behind the argument. If new peers wishing to stream
arrive according to a Poisson process then their playback
times are uniformly distributed across the length of the file.
Let At denote the length of the interval [t, t.]. Thus the
expected value for At is

26)

As n increases, this interval shrinks. If we only admit peers
to stream that can startup within this interval then the
expected load imposed on the hole-filling server by a peer is
simply

@n

1
E[load per peer] = TE[A[]E[startup rate from server]

1 kT
=7 — E[startup rate from server]
n

The load imposed by n peers is thus

US 9,210,085 B2

Etotal load] = nE[load of peer] (28)
= kE[startup rate from server] 29

Since the “startup rate from server” corresponds to the send
rate to a single user during startup, the expected load is

E[total load]=0(1).

The question remains as to whether the expected “startup
rate from the server” is truly independent of n. The following
detailed argument suggests that it is.

The 0(1) Argument

Consider the case when the downlink is the bottleneck A
similar analysis exists for the case when BitTorrent is bottle-
necked elsewhere.

As before, for all 1 € [0, £*]:

Rs()+Rp(n) = C, 30
Rs(0) + E(®) = ro, @D
Rs(1), Rg(1) 2 0, 32)

and

B() = f Ry(z, n)d.
=0

We call t<At, the startup period. At the beginning of the
startup period, the system behaves exactly like BASS. A
hole-filling server pumps up the peer while the peer engages
in rarest-first downloading across the range [0, At]. However,
the interval over which pieces are downloaded is a sliding
window and thus the behavior of Kindling and BASS soon
diverge. The benefit derived from Kindling measured in num-
ber of bits played becomes the following.

For all t<At:

B = R [—Td (33)
([)_Lo B(T)T T

E(t), the rate bits are read by the codec from the file,
becomes

b 48 _d N (34)
0= ar Ejr‘:()f B(T)T T
Substituting Equation (34) into Equation (31) yields

35

R df Re()—Zd
S([)+E‘ L B(T)T T=ro.

Substituting C-Ry(t) for R (t) from Equation (30) into
Equation (35) yields

C—R df [—Td
- B([)+E r:O_A[T =ro,

which simplifies to

10

15

25

40

45

50

55

60

65

16

C-R ! rR dt = 36)
- B([)+A_t£:0 g(T)dT =ro.

By differentiating we turn this into a first-order homog-
enous linear differential equation.

’ 1 (37)
—Rp(0) + ERB(I) =0.
Solving (37) yields
Rp(n) = aeh’?_ (38)

Where o is an arbitrary constant.
We obtain the initial conditions from the integral equation
(36) by evaluating at t=0 to get

Ry(0) = (C = roJens 39

forr < Ar and Rp(r) < C.

From Equation 39 we see that BitTorrent ramps up expo-
nentially to take over the bottleneck. Once R;(t)=C, BitTor-
rent has taken over and the peer no longer needs the server.

The expected load imposed by a peer that ramps up within
the startup interval is thus

Elload per peer] = E[Rs(0)]

1 s t
:—f C—(C—-rypebidr
T =0

= %[c;x — (= roaTlel —1]]

(40)

where t, is the time it takes before BitTorrent has com-
pletely taken over. To solve for the time it takes for BitTorrent
to take over we simply solve for R (t,)=0=C-Ry(t,), which
yields

C 41
g = Arln . “h
—ro

Substituting Equation 41 into Equation (40) yields

FlRs ()] = [c1] “2)
s(0] = e
c 43
Eltotal load] = nE[Rs()] = k[Cln - ro].
C—-ry
Since k, C, and rg are all constants,
Eltotal load] = O(1). 44)

Kindling’s Admission Control

In one embodiment Kindling uses admission control to
ensure users have sufficient capacity to stream. The admis-
sion controller is an optimization that improves the probabil-

US 9,210,085 B2

17

ity of uninterrupted streaming. The admission control can be
advisory meaning that the admission controller might only
warn the user when uninterrupted streaming is unlikely or
impossible.

Kindling does not use an auction.

Instead Kindling’s Admission Control admits users when
they have enough capacity to startup within the startup period
[0, At] and have enough capacity to eventually sustain stream-
ing without the aid of hole-filling servers. Because all such
admitted peers have been submitted to the same requirement,
the portion of the P2P network that is streaming is always
well-provisioned.

Kindling has a magic number—a threshold above which
streaming becomes possible. It is simply the capacity neces-
sary to startup within the startup interval, i.e., t,<At. Starting
from Equation (41),

That is,

C>1.58r,, @5)

As long as a peer’s capacity exceeds 1.58 times the
encoded bit rate, it can be admitted. Note that there is a twist
to this that allows peers to work toward the threshold capacity
which we treat below.

So that each peer can send at least as much as it needs to
consume, the admission controller require the peer’s uplink
and downlink capacity both meet this test. Prior to admission,
the admission controller requires the peer to run a bandwidth
estimator, e.g., as is done by broadbandreports.com, and if the
peer meets the test then we queue it for admission.

If a peer cannot be admitted for streaming right away, it can
still engage in BitTorrent to download the file. Here is the
aforementioned twist, as the peer downloads from BitTorrent
the bits are spread evenly across the file. As far as Kindling is
concerned, this is effectively the same as reducing the
encoded bit rate, since only the non-downloaded part of the
file must be streamed. Ifa peer downloads half of the file, then
on average the streaming rate halves and the admission
threshold capacity also halves.

Thus any peer can eventually start streaming, although a
slower peer may have to wait until it has downloaded almost
the entire file.

Kindling and Cheaters

In one embodiment Kindling attempts to identify and pun-
ish those that try to download excessively from the server
rather than from peers. If a streaming peer continues to down-
load from a hole-filling server after the startup interval plus
some amount of time to take into account randomness (per-
haps twice the startup interval), the hole-filling server closes
the connection to the streaming peer. The streaming peer can
continue to try to stream, but it no longer has any access to a
server to fill-in holes. The impending deadline to switch
entirely over to BitTorrent should be sufficient motivation for
peers to work as hard as possible to ramp up the P2P network.

Kindling’s Poisson Peer Arrival Process Assumption

Poisson processes arise when users behave independently.
The most likely time to find large scale coordination between
users is on the release date, when users will likely arrive in a

10

15

20

25

30

40

45

50

55

60

65

18

burst that then dwindles to a Poisson process. If all of the
peers are near the beginning of the file then there are no peers
further into playback that can forward pieces to earlier peers.
Nor are there sufficient seeds to make up the difference.

When this occurs, the only way to permit streaming is to
introduce infrastructure. A CDN could allocate additional
hole-filling servers and peers to jump start the entire peer-to-
peer network. However, because Kinding is not effective
during this stage, this will require O(n) infrastructure.

An alternate strategy is to permit users to download the
media file before the release date, but the content provider
withholds a decryption key. When the release date is reached,
the peer-to-peer network is already well deployed with many
seeds. Once the small file containing the decryption key is
distributed, people who have already downloaded the file can
begin viewing.

If the file is encrypted in independent blocks then people
with partial downloads can decrypt what they have already
downloaded and immediately request admission to start
streaming.

BASS, Kindling and Impatient Users

Both BASS and Kindling incur sublinear growth in the
number of infrastructure nodes necessary to provide stream-
ing. There is a significant cost-savings argument motivating
BitTorrent, BASS, and Kindling. If however a user is willing
to pay for the infrastructure, additional infrastructure should
be allocated to delivering the content. Assume there are O(m)
users who want to stream a file right now but they have
insufficient upstream capacity to contribute to the BitTorrent
network to obtain admission. If the CDN has O(m) underuti-
lized infrastructure, the CDN could always admit the user for
the corresponding price.

Preemption

let t=current playback time.

let T=duration of file.

As the playback deadline for a piece approaches, when the
time gets close enough that the likelihood of downloading in
time from the server reaches a safe bound then the local peer
preempts any download from a peer and downloads directly
from the server.

In one embodiment, the time needed to download a piece is
the estimated time to download all non-downloaded pieces
from the current playback point to the piece in question plus
k*sigma, where sigma is the directly-measured standard
deviation in piece download times.

Safe download time is upper bounded to handle the case
when the encoded bit rate exceeds the rate received from the
server; otherwise, the safe download time diverges resulting
in all pieces being requested from the server.

In one embodiment, the request to the remote peer is not
cancelled until the requested piece arrives from the server. For
a given value of k, this slightly increases the probability that
the piece will complete download by the time it is needed with
the potential overhead of downloading pieces more than one
time.

Eligible Set Computation

When a local peer A decides what piece to download from
remote peer B, it rules out pieces that would not likely arrive
before they would be preempted.

The algorithm adds remote peer B’s safe time to the server
safe time to determine the minimum piece that is eligible for
downloading from peer B.

B’s safe time is determined in the same manner as the
server’s safe time. All pieces with deadlines beyond the server
+B’s safe times are considered eligible, and all such pieces
form the eligible set.

Priority Window

US 9,210,085 B2

19

Referring to FIG. 10, a priority window 1002 having a
width of a fixed number of pieces moves in front of the
playback point (t). This window is sized to be larger than the
maximum bound on “safe time” (the conservative estimate
safe download time described above).

When a local peer decides what piece to download from a
remote peer, the local peer picks the earliest eligible piece the
remote peer has within the priority window that the local peer
does nothave. A piece is eligible if it is likely to be transferred
from the remote peer before it exceeds its safe time, at which
point it would be preempted and downloaded from the server.
If the remote peer does not have a piece within the priority
window, the local peer downloads the rarest eligible piece
within the range [t,T] that the remote peer has, and that the
local peer does not have.

Use of a priority window has the potential to cause pieces
near the beginning of the file to become more prevalent in the
swarm than pieces near the end of the file, resulting in under-
utilization of the peer network. Consider the case when two
peers have the first half of the file but none of the second half.
Both need pieces, yet neither has anything the other wants.
And, consequently, everything is downloaded from the
server.

Priority Window with In-order Rate Adaptation

To improve utilization of the peer network, in one embodi-
ment an adaptive rate controller is introduced, which seeks to
saturate each peer’s uplink capacity.

The approach is to periodically modify the rate at which
pieces are downloaded from the priority window (earliest-
eligible first), increasing this rate if the uplink is saturated and
deceasing it if the uplink is underutilized.

The adaptive rate controller adjusts how pieces are picked
for download and does not control the aggregate rate that
bytes are transferred on any timescale relevant to the conges-
tion controller, which operates separately.

As an example implementation of this controller, each peer
could maintain a token bucket rate limiting the earliest-eli-
gible download rate. Each time a local peer picks a piece to
download from a remote peer, if the token bucket is non-
empty, the local peer picks the earliest eligible piece from the
priority window that the local peer does not have and has not
requested, and that the remote peer has; when such earliest-
eligible pieces are downloaded, the token bucket is debited
appropriately. If the remote peer does not have a piece in the
priority window that the local peer can use or if the token
bucket is empty then the local peer picks a piece in rarest first
order among the eligible set.

Example Pseudocode:

let x = earliest-eligible download rate
let r = total download rate.
letr_ 0 = encoding rate
let r__up = uplink rate
let c__up = uplink capacity
let c__down = downlink capacity
let rfs = rarest-first rate from server.
let epsilon >=1
let alpha, beta and gamma be in [0,1]. They are
present to prevent overcontrol.

Every interval run:

if r_up <alpha * ¢_up:

X —=beta * (c_up - r_up)
else:
X +=gamma * c_up

excess = max(¢c_down-r_0,0)

X = max(x, —excess)

X = min(x, r0 * epsilon)

ifx <0:

rfs = -x

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

else
fs =0
On every token__interval:
token__bucket += max(0, x) *
token__interval
token__bucket = min(token__bucket,
max__token)
To pick a piece from remote peer B:
if token__bucket > 0 &&
(B has pieces in the eligible set):
token__ bucket--
return earliest eligible piece
else:
return rarest piece in eligible set

©)

(10)

an
12
(13)
14

15

Looking at lines (1)-(15) of the pseudocode above:

(1)~(2) If uploading is at less than capacity, decrease the
earliest-eligible download rate.

(3) Else, increase the earliest-eligible download rate.

(4) Determine how much headroom there is for download-
ing from the server in rarest-first order.

(5) Do not let downloading in rarest-first order interfere
with downloading at the encoded bit rate from the server.

(6) Upper bound x because there is usually no purpose in
downloading much faster than the encoded bit rate in earliest-
eligible order when downloading in rarest first order is less
likely to have future ill effect.

(7)-(9) Negative values for x denote need to download from
the server in rarest first, because downloading rarest first from
the swarm was not enough to saturate the local uplink.

(10)-(11) Add tokens to the bucket at rate x, not exceeding
the bucket depth

(max_token).

(12)-(15) if the token bucket is nonempty, the local peer
picks the earliest eligible piece from the priority window that
the local peer does not have and has not requested and that the
remote peer has; when such earliest-eligible pieces are down-
loaded, the token bucket is debited appropriately. If the
remote peer does not have a piece in the priority window that
the local peer can use or if the token bucket is empty then the
local peer picks a piece in rarest first order among the eligible
set.

The present invention has been described in particular
detail with respect to a limited number of embodiments.
Those of skill in the art will appreciate that the invention may
additionally be practiced in other embodiments.

Within this written description, the particular naming of
the components, capitalization of terms, the attributes, data
structures, or any other programming or structural aspect is
not mandatory or significant, and the mechanisms that imple-
ment the invention or its features may have different names,
formats, or protocols. Further, the system may be imple-
mented via a combination of hardware and software, as
described, or entirely in hardware elements. Also, the particu-
lar division of functionality between the various system com-
ponents described herein is merely exemplary, and not man-
datory; functions performed by a single system component
may instead be performed by multiple components, and func-
tions performed by multiple components may instead per-
formed by a single component.

Some portions of the above description present the feature
of the present invention in terms of algorithms and symbolic
representations of operations on information. These algorith-
mic descriptions and representations are the means used by
those skilled in the art to most effectively convey the sub-
stance of their work to others skilled in the art. These opera-
tions, while described functionally or logically, are under-

US 9,210,085 B2

21

stood to be implemented by computer programs.
Furthermore, ithas also proven convenient at times, to referto
these arrangements of operations as modules or code devices,
without loss of generality.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the present discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “selecting” or “computing” or “determining” or the like,
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Certain aspects of the present invention include process
steps and instructions described herein in the form of an
algorithm. It should be noted that the process steps and
instructions of the present invention could be embodied in
software, firmware or hardware, and when embodied in soft-
ware, could be downloaded to reside on and be operated from
different platforms used by real time network operating sys-
tems.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, application specific integrated circuits
(ASICs), or any type of media suitable for storing electronic
instructions, and each coupled to a computer system bus.
Furthermore, the computers referred to in the specification
may include a single processor or may be architectures
employing multiple processor designs for increased comput-
ing capability.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general-purpose systems may also be used with pro-
grams in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear from the description
above. In addition, the present invention is not described with
reference to any particular programming language. It is
appreciated that a variety of programming languages may be
used to implement the teachings of the present invention as
described herein, and any references to specific languages are
provided for disclosure of enablement and best mode of the
present invention.

Finally, it should be noted that the language used in the
specification has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter.
Accordingly, the disclosure of the present invention is
intended to be illustrative, but not limiting, of the scope of the
invention.

What is claimed is:
1. A method for viewing streamed content over a network,
the method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

22

receiving, by a receiving peer via a first connection, a first
portion of a content stream from a transmitting peer in a
peer-to-peer network, the first portion including less
than the entire content stream, a first priority level
assigned to the first connection based on the first con-
nection being a peer-to-peer type connection;

playing, by the receiving peer, the received first portion of

the content stream;

computing, by the receiving peer, a bid representing a

maximum number of bits to be received by the receiving
peer from a server included in the network;

submitting, by the receiving peer, the bid to the server;

responsive to the bid, obtaining, by the receiving peer via a

second connection, a second portion of the content
stream from the server, a second priority level assigned
to the second connection based on the second connec-
tion being a server-to-peer type connection;

granting, by the receiving peer, the second connection

assigned the second priority level a higher priority to
bandwidth access than is granted to the first connection
assigned the first priority level; and

playing, by the receiving peer, the obtained second portion

of the content stream.

2. The method of claim h wherein the second portion of the
content stream is obtained from the server responsive to a
determination while the first portion is being received that the
first portion will not include the second portion.

3. The method of claim 1, wherein granting the second
connection assigned the second priority level a higher priority
to bandwidth access than is granted to the first connection
assigned the first priority level comprises:

decreasing in size a receive window associated with the

first connection.

4. The method of claim 1, wherein granting the second
connection assigned the second priority level a higher priority
to bandwidth access than is granted to the first connection
assigned the first priority level comprises:

limiting to a maximum rate a rate at which data received via

the first connection is read.

5. The method of claim 1, further comprising:

after obtaining via the second connection the second por-

tion of the content stream from the server, computing a
revised bid, the revised bid representing a maximum
number of bits to be subsequently received by the receiv-
ing peer from the server; and

submitting the revised bid to the server.

6. The method of claim 5, wherein computing the revised
bid comprises:

determining a first number representing bits associated

with the content stream previously received from the
peer-to-peer network;

determining a second number representing bits included in

the entire content stream; and

subtracting the first number from the second number.

7. The method of claim 5, wherein computing the revised
bid comprises:

determining whether a downlink associated with the first

connection is in an unsaturated condition or a saturated
condition;

responsive to a determination that the downlink is in an

unsaturated condition, calculating an expected load
upon the server as a function of an observed bitrate
associated with the first connection;

responsive to a determination that the downlink is in a

saturated condition, calculating the expected load upon
the server as a function of an available capacity associ-
ated with the downlink; and

US 9,210,085 B2

23

basing the revised bid upon the expected load upon the

server.
8. The method of claim 1, further comprising:
responsive to requesting a number of bits from the server in
excess of the bid, suffering a penalty that includes one or
more of the following: discontinued access to the server,
decreased access to the server, and receiving an adver-
tisement from the server.
9. The method of claim 1 wherein the second portion of the
content stream is received from the server responsive to the
bid being lower than bids received by the server from other
peers in the network.
10. A method for receiving streamed content over a net-
work, the stream including a plurality of ordered pieces, the
method comprising:
obtaining, by a receiving peer, a first set of pieces of the
stream from at least one transmitting peer in a peer-to-
peer network via at least a first connection, a first priority
level assigned to the first connection based on the first
connection being a peer-to-peer type connection;

playing, by the receiving peer, at least a portion of the first
set of pieces;

determining, by the receiving peer, that at least one ordered

piece of the plurality of ordered pieces of the stream is
not included in the first set of pieces;

determining, by the receiving peer, that the at least one

ordered piece of the plurality of ordered pieces will not
be received from the peer-to-peer network prior to the
local playback reaching the at least one ordered piece;

computing, by the receiving peer, a bid representing a

maximum number of bits to be received by the receiving
peer from a server included in the network;

submitting, by the receiving peer, the bid to the server; and

responsive to the bid, obtaining, by the receiving peer, the

at least one ordered piece from the server via a second
connection, a second priority level assigned to the sec-
ond connection based on the second connection being a
server-to-peer type connection; and

wherein the second connection assigned the second prior-

ity level is granted a higher priority to bandwidth access
than is granted to the first connection assigned the first
priority level.

11. The method of claim 10, wherein obtaining the first set
of pieces of the stream from the at least one transmitting peer
comprises:

receiving a list of time-wise neighboring peers in the peer-

to-peer network; and

requesting an ordered piece from a time-wise neighboring

peer more frequently than requesting an ordered piece
from any other peer.

12. The method of claim 11, wherein the list of time-wise
neighboring peers comprises a predetermined number of
peers also playing the stream and having associated play-
backs greater than and nearest to the local playback.

13. The method of claim 11, wherein the list of time-wise
neighboring peers comprises a predetermined number of
peers that started receiving the stream most recently.

14. The method of claim 11, wherein obtaining the first set
of pieces of the stream from the at least one transmitting peer
comprises:

calculating a priority interval ahead of the local playback,

the priority interval bounded by a first playback point
and a second playback point ; and

requesting an earliest ordered piece corresponding to the

priority interval from a time-wise neighboring peer.

25

35

40

45

50

55

60

65

24

15. The method of claim 14, wherein obtaining the first set
of pieces of the stream from the at least one transmitting peer
further comprises:

responsive to the earliest ordered piece being unavailable

from the time-wise neighbor peer, requesting the rarest
piece available from the time-wise neighboring peer.

16. The method of claim 14, wherein the first playback
point is equal to the local playback plus a minimum buffer
time.

17. The method of claim 10, wherein obtaining the at least
one ordered piece from the server comprises:

calculating an upload bandwidth and a download band-

width;

submitting the upload bandwidth and the download band-

width to the server; and

responsive to both the upload bandwidth and the download

bandwidth exceeding a threshold, accessing the server.

18. The method of claim 10, wherein determining that the
at least one ordered piece of the plurality of ordered pieces
will not be received from the peer-to-peer network prior to the
local playback reaching the at least one ordered piece com-
prises:

calculating a preemption time, the preemption time repre-

senting the time required to obtain from the peer-to-peer
network all ordered pieces remaining between the local
playback and a playback point associated with the at
least one ordered piece; and

determining based on the preemption time that at least one

ordered piece will not be received from the peer-to-peer
network prior to the local playback reaching the at least
one ordered piece.

19. A computer program product for viewing streamed
content over a network, the computer program product stored
on anon-transitory computer-readable medium and including
program code for causing a processor to execute steps com-
prising:

receiving, by a receiving peer via a first connection, a first

portion of a content stream from a transmitting peer in a
peer-to-peer network, the first portion including less
than the entire content stream, a first priority level
assigned to the first connection based on the first con-
nection being a peer-to-peer type connection;

playing, by the receiving peer, the received first portion of

the content stream;

computing, by the receiving peer, a bid representing a

maximum number of bits to be received by the receiving
peer from a server included in the network;

submitting, by the receiving peer, the bid to the server;

responsive to the bid, obtaining, by the receiving peer via a

second connection, a second portion of the content
stream from the server, a second priority level assigned
to the second connection based on the second connec-
tion being a server-to-peer type connection;

granting, by the receiving peer, the second connection

assigned the second priority level a higher priority to
bandwidth access than is granted to the first connection
assigned the first priority level; and

playing, by the receiving peer, the obtained second portion

of the content stream.

20. The computer program product of claim 19, wherein
the second portion of the content stream is obtained from the
server responsive to a determination while the first portion is
being received that the first portion will not include the sec-
ond portion.

21. The computer program product of claim 19, wherein
granting the second connection assigned the second priority

US 9,210,085 B2

25

level a higher priority to bandwidth access than is granted to

the first connection assigned the first priority level comprises:

decreasing in size a receive window associated with the
first connection.

22. The computer program product of claim 19, wherein
granting the second connection assigned the second priority
level a higher priority to bandwidth access than is granted to
the first connection assigned the first priority level comprises:

limiting to a maximum rate a rate at which data received via

the first connection is read.

23. The computer program product of claim 19, the pro-
gram code further causing the processor to execute the steps
of:

after obtaining via the second connection the second por-

tion of the content stream from the server, computing a
revised bid, the revised bid representing a maximum
number of bits to be subsequently received by the receiv-
ing peer from the server; and

submitting the revised bid to the server.

24. The computer program product of claim 19 , the pro-
gram code further causing the processor to execute the step
of: responsive to requesting a number of bits from the server
in excess of the bid, suffering a penalty that includes one or
more of the following: discontinued access to the server,
decreased access to the server, and receiving an advertise-
ment from the server.

25. The computer program product of claim 23, wherein
computing the revised bid comprises:

determining whether a downlink associated with the first

connection is in an unsaturated condition or a saturated
condition;

responsive to a determination that the downlink is in an

unsaturated condition, calculating an expected load
upon the server as a function of an observed bitrate
associated with the first connection;

responsive to a determination that the downlink is in a

saturated condition, calculating the expected load upon
the server as a function of an available capacity associ-
ated with the downlink; and

basing the revised bid upon the expected load upon the

server.
26. The computer program product of claim 19 , the pro-
gram code further causing the processor to execute the step
of:
responsive to requesting a number of bits from the server in
excess of the bid, suffering a penalty that includes one or
more of the following: discontinued access to the server,
decreased access to the server, and receiving an adver-
tisement from the server.
27. A computer program product for receiving streamed
content over a network, the stream including a plurality of
ordered pieces, the computer program product stored on a
non-transitory computer-readable medium and including
program code for causing a processor to execute the steps of:
obtaining, by a receiving peer, a first set of pieces of the
stream from at least one transmitting peer in a peer-to-
peer network via at least a first connection, a first priority
level assigned to the first connection based on the first
connection being a peer-to-peer type connection;

playing, by the receiving peer, at least a portion of the first
set of pieces;

determining, by the receiving peer, that at least one ordered

piece of the plurality of ordered pieces of the stream is
not included in the first set of pieces;

determining, by the receiving peer, that the at least one

ordered piece of the plurality of ordered pieces will not

10

20

25

30

35

40

45

50

55

60

26

be received from the peer-to-peer network prior to the
local playback reaching the at least one ordered piece;

computing, by the receiving peer, a bid representing a

maximum number of bits to be received by the receiving
peer from a server included in the network;

submitting, by the receiving peer, the bid to the server; and

responsive to the bid, obtaining, by the receiving peer, the

at least one ordered piece from the server via a second
connection, a second priority level assigned to the sec-
ond connection based on the second connection being a
server-to-peer type connection; and

wherein the second connection assigned the second prior-

ity level is granted a higher priority to bandwidth access
than is granted to the first connection assigned the first
priority level.

28. The computer program product of claim 27, wherein
obtaining the first set of pieces of the stream from the at least
one transmitting peer comprises:

receiving a list of time-wise neighboring peers in the peer-

to-peer network; and

requesting an ordered piece from a time-wise neighbor

peer more frequently than requesting an ordered piece
from any other peer.

29. The computer program product of claim 28, wherein
the list of time-wise neighboring peers comprises a predeter-
mined number of peers also playing the stream and having
associated playbacks greater than and nearest to the local
playback.

30. The computer program product of claim 28, wherein
the list of time-wise neighboring peers comprises a predeter-
mined number of peers that started receiving the stream most
recently.

31. The computer program product of claim 28, wherein
obtaining the first set of pieces of the stream from the at least
one transmitting peer comprises:

calculating a priority interval ahead of the local playback,

the priority interval bounded by a first playback point
and a second playback point ; and

requesting an earliest ordered piece corresponding to the

priority interval from a time-wise neighboring peer.

32. The computer program product of claim 31, wherein
obtaining the first set of pieces of the stream from the at least
one transmitting peer further comprises:

responsive to the earliest ordered piece being unavailable

from the time-wise neighbor peer, requesting the rarest
piece available from the time-wise neighboring peer.

33. The computer program product of claim 31, wherein
the first playback point is equal to the local playback plus a
minimum buffer time.

34. The computer program product of claim 25, wherein
obtaining the at least one ordered piece from the server com-
prises:

calculating an upload bandwidth and a download band-

width;

submitting the upload bandwidth and the download band-

width to the server; and

responsive to both the upload bandwidth and the download

bandwidth exceeding a threshold, accessing the server.

35. The computer program product of claim 27, wherein
determining that the at least one ordered piece of the plurality
of ordered pieces will not be received from the peer-to-peer
network prior to the local playback reaching the at least one
ordered piece comprises:

calculating a preemption time, the preemption time repre-

senting the time required to obtain from the peer-to-peer
network all ordered pieces remaining between the local

US 9,210,085 B2
27 28

playback and a playback point associated with the at
least one ordered piece; and

determining based on the preemption time that at least one
ordered piece will not be received from the peer-to-peer
network prior to the local playback reaching the at least 5
one ordered piece.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,210,085 B2 Page 1of1
APPLICATION NO. 1 11/868464

DATED : December §, 2015

INVENTOR(S) : David Harrison

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
Column 22, Line 24, delete “claim h™,” insert --claim 1--.
Column 25, Lines 21-27, delete:

“24. The computer program product of claim 19, the program code further causing the
processor to execute the step of::

responsive to requesting a number of bits from the server in excess of the bid, suffering a
penalty that includes one or more of the following: discontinued access to the server, decreased access
to the server, and receiving an advertisement from the server.”

Insert:

--24. The computer program product of claim 23, wherein computing the revised bid
comprises:
determining a first number representing bits associated with the content stream previously
received from the peer-to-peer network;
determining a second number representing bits included in the entire content stream; and
subtracting the first number from the second number.--.

Column 26, Line 51, delete “claim 25 insert --claim 27--.

Signed and Sealed this
Seventh Day of February, 2017

Tcbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

